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In this article fluid flow and heat transfer in curved eccentric annuli are studied numerically. A second
order finite difference method based on the Projection algorithm is implemented to solve the governing
equations including the full Navier–Stokes, the continuity, and the energy equations in a toroidal coor-
dinate system. For convenience a bipolar based toroidal coordinate system is employed to discretize the
governing equations in the annulus domain using a uniform staggered grid which is required in finite
difference methods. Considering hydrodynamically and thermally fully developed conditions, the effects
of different physical parameters such as eccentricity, Dean number, curvature, Prandtl number on the
flow field and thermal characteristics at different thermal boundary conditions are investigated in detail.
It is also shown that in contrast to straight eccentric annuli, heat transfer rates can be augmented in the
eccentric curved annuli comparing with the straight concentric annuli at the large dean numbers.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Flow and heat transfer in curved eccentric annuli encounter in
many engineering problems such as heat exchangers, lubrication
systems, aerospace industries, chemical reactors, and in bio-
mechanics such as blood flow in catheterized artery, angiography
or arteriography of the blood vessel, etc. Therefore, understanding
the detailed physics of the problem will help improve the design of
the systems concerned.

The physics of the fluid flow inside the curved pipes are very
much complicated due to the presence of curvature generating
centrifugal and pressure forces in the curvature direction. In
contrast to the centrifugal forces, the pressure forces decrease in
the curvature direction as the fluid particles approach center of
curvature. Mutual effects of the centrifugal, pressure, inertia and
viscous forces provide a very complex flow pattern which has not
physically fully understood. A relatively detailed qualitative phys-
ical description of the flow in a plain curved pipe has been carried
out by Yao and Berger [1]. However, shifting from a plain curved
pipe flow to eccentric curved annuli makes the flow pattern more
complex owing to the presence of an additional internal curved
pipe as well as eccentricity effect. In this case the secondary
boundary layers start developing on the walls of both curved pipes
: þ98 21 66419736.
i).
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from their outermost point of the curvatures, where the pressure
forces are more than the centrifugal ones. On the other hand, in the
core region of the two pipe walls, the reverse fluid motion, i.e. from
the inner to the outer radii of curvature, occurs resulting from the
larger centrifugal and smaller pressure forces. This secondary core
flow which starts from the symmetrical plane at the inner radii of
the curvature (x¼p) develops similar to a jet flow and interacts
with the opposite flowing secondary boundary layers forming two
pairs of vortices, a weak pair close to the inner pipe and a strong
one close to the outer pipe. This phenomenon implies a physical
point that in the secondary flows the diffusion of viscous forces
occurs more rapidly than the main axial flow owing to the presence
of small inertia forces (order of magnitude of secondary inertia
forces is about 10�1 of the axial one).

Studies on the fluid flow and heat transfer inside an eccentric
annulus have been carried out for straight annuli considering either
horizontal or vertical cases which include both the fully developed
and developing flows. One of the early works is related to Snyder [2]
who studied heat transfer in an eccentric annulus under the slug
flow assumption by an analytical approach. He considered fully
developed condition with the outer pipe as insulated. Laminar
forced convection in eccentric annuli has been studied by Cheng and
Hwang [3], Trombetta [4], and Susuki et al. [5] using analytical and
numerical tools at different thermal boundaries. Manglik and Fang
[6] have studied the effect of eccentricity on the heat transfer using
different thermal boundary conditions in laminar fully developed
conditions. They have indicated that the Nusselt number decreases
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Nomenclature

a radius of curvature and the pole of the bipolar
coordinate system on the x-axis

cp specific heat at constant pressure
Dh hydraulic diameter, Dh¼ 2(ro� ri)
e eccentricity
E dimensionless eccentricity, e/ro� ri

f average friction factor
fi local friction factor on inner wall
fo local friction factor on outer wall
h coordinate scale factor
Gr Grashof number
hh coordinate scale factor in the h direction
hx coordinate scale factor in the x direction
h4 coordinate scale factor in the 4 direction
k thermal conductivity
kLC Dean number, Re/l1/2

n! unit normal vector
N radius ratio, ri/ro

Nu average Nusselt number
Nux local Nusselt number
p pressure
Pr Prandtl number, Pr¼ n/a
q00 heat flux
ri inner pipe radius
ro outer pipe radius

Re Reynolds number, Re¼wmDh/n
t time
T temperature
T average temperature
Tm bulk fluid temperature
u,v,w velocity components in x, h and 4 direction,

respectively
V velocity vector
wm mean axial velocity

Greek symbols
a thermal diffusivity
h first bipolar coordinate
l curvature ratio, l¼ a/Dh

q non-dimensional temperature
m viscosity of fluid
n kinematic viscosity
x second bipolar coordinate
r density of fluid
s stress
4 curvature coordinate

Subscripts
i inner wall
m average value
o outer wall

ri
ro

η=0

x

a
y

ϕ

Fig. 1. Gemoetry of the physical domain.
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as the eccentricity increases. Therefore, concentric pipes have better
heat transfer rate than the similar straight eccentric annuli. The
studies by Feldman et al. [7,8] have investigated developing flow and
temperature inside eccentric annular ducts using a finite difference
method. They have examined different thermal boundary condi-
tions and shown that both hydrodynamic and thermal entrance
lengths increase as the eccentricity increases. A numerical study for
steady laminar two-dimensional natural convection in concentric
and eccentric horizontal cylindrical annuli has been carried out by
Ho et al. [9] who have applied a constant heat flux on the inner wall
and a specified isothermal temperature on the outer wall to study
the effect of the Prandtl number and the eccentricity on the heat
transfer rate. They have shown the heat transfer rate weakly
depends on the Prandtl number but primarily depends on the
eccentricity. Hirose et al. [10] have conducted numerical analyses
and experiments on the natural convection heat transfer in eccentric
horizontal annuli between a heated outer tube and a cooled inner
tube with different orientations. They have found that the heat
transfer changes by eccentricity and oriented angle. Furthermore, an
experimental and numerical study have been performed by Naylor
et al. [11] on the natural convection heat transfer from a horizontal
isothermal inner tube to a surrounding isothermal outer tube. They
have discussed how differently eccentricity affects on the heat
transfer at different range of Rayleigh numbers. The study by
Sathyamurthy et al. [12] has focused on the laminar mixed convec-
tion in a vertical eccentric annulus where a finite volume approach
has been employed to solve the governing equations. On the other
hand, Choudhury and Karki [13] have investigated laminar mixed
convection in a horizontal eccentric annulus by a numerical
approach to study the eccentricity effect on the heat transfer rate
and friction. Also, other works in vertical annuli using finite differ-
ence method have been performed to study developing forced
convection [14], conjugate natural convection heat transfer [15],
limiting values for free-convection induced flow rates [16], and
developing mixed convection [17]. All the works published in the
eccentric annuli only involves straight pipes.

Since the aim of this study is fluid flow and heat transfer in
eccentric curved annuli, it is necessary to review some of the works
done on the curved pipe flows. The first major study on the flow in
the curved pipe was made by Dean [18,19] who considered a loosely
curved pipe where the flow depends on a single non-dimensional
parameter, i.e. the Dean number, K¼ 2a/R(wmaxa/n)2, where a is the
radius of pipe, R is the radius of curvature, wmax is the maximum
axial velocity in the corresponding straight pipe, and n is the
kinematic viscosity. Dean’s work is valid for K� 576. In later works
on curved pipes, a variety of Dean numbers have been used by



Fig. 2. The geometry in the bipolar coordinate, a: Physical domain, b: Computational
domain.
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different researchers. For example McConalogue and Srivastava
[20] proposed the parameter D¼ (Ga2/m)(2a3/n2R)1/2, where G is the
constant pressure gradient along the pipe. This parameter relates to
K as D¼ 4K1/2. By this definition of Dean number, the upper limit of
Table 1
Grid independency test in three different mesh sizes of 40� 20, 60� 30, and 80� 40 at

Axial velocity contours
40*20

Temperature contours

40*20

Friction factors 0.44040713 0.4
Nusselt numbers 5.551282 5.4
Dean’s work becomes 96. They considered intermediate range of
Dean numbers (96�D� 600) using Fourier series method to
formulate the problem and solve the resulting equations numeri-
cally. Collins and Dennis [21], and Dennis [22] used finite difference
method to solve the flow equations in the range of 96�D� 5000.
An investigation on developing laminar flow in a curved pipe was
made by Soh and Berger [23] using artificial compressibility tech-
nique. They found that the curvature ratio has great effect on the
intensity of secondary flow and the separation which occurs near
the inner wall of curved pipe. Among other similar works on flow in
a stationary curved pipe, the works of Pedley [24], Dennis and Ng
[25], Ito [26] and Kao [27] can be mentioned. Nobari and Gharali
[28] have investigated the effect of internal fins on the fluid flow
and heat transfer through a rotating straight pipe and a stationary
curved pipe. Ishigaki [29–31] examined flow and heat transfer in
a rotating curved pipe and investigated the effect of coriolis force in
complicating the flow structure. Heat transfer and fluid flow in
a curved annular pipe has been studied in the fully developed
region by Karahalios [32], Petrakis and Karahalios [33]. Also, the
effect of catheterization on the flow characteristics in a curved
artery was studied by Karahalios [34], Ebadian [35], Jayaraman and
Tiwari [36] and Dash et al. [37].

Here, the flow and heat transfer inside an eccentric curved annulus
is studied for the first time using a second order finite difference
method based on the projection algorithm [38] to solve the governing
equations including the continuity, full Navier–Stokes, and energy
equations on a bipolar-toroidal coordinate system. The flow is
assumed to be hyrodynamically and thermally fully developed and
four different thermal boundaries are taken into account consisting of
the inner pipe insulated and the outer pipe either at the constant
temperature or at the constant heat flux and vice versa. Due to the
presence of the symmetrical flow field, it is sufficient to solve only the
upper or lower half of the domain. The effects of the governing non-
dimensional parameters, such as Dean number, kLC, Reynolds number,
Re, curvature ratio, l, and eccentricity, E, on the flow characteristics
involving axial flow, secondary flow pattern, friction factor, tempera-
ture profiles and Nusselt number are investigated in detail. Further-
more, the possibility of the heat transfer rate augmentation in the
eccentric curved annuli is discussed.
2. Governing equations

Here incompressible viscous fluid flow and heat transfer are
studied in eccentric curved annuli (Fig. 1) taking into account the
Re¼ 320 and Pr¼ 1.

60*30 80*40

60*30 80*40

3747213 0.42709157
50651 5.283492
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hydrodynamically and the thermally fully developed region. To
obtain the steady state solution of the problem, the transient form
of the governing equations consisting of the continuity, full Navier–
Stokes, and the energy equations are derived in a bipolar-toroidal
coordinate system which is compatible both with the geometry of
the current problem and with the present implemented finite
difference scheme. Therefore, the governing equations can be
expressed as the continuity
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where u is the velocity in the x direction, v the velocity in the h

direction, w the velocity in the 4 direction, r the density, m the
viscosity, k the conductivity, cp the constant pressure specific heat, p
the pressure, and T the temperature. In addition, h is the scale factor
of the bipolar-toroidal coordinate system and can be defined as

h ¼ hx ¼ hh ¼ a
cosh h�cos x

h4 ¼ h sinh h
(6)

where, a is the pole of bipolar coordinate and the radius of curva-
ture, which is expressed as

a ¼ ri sinh hi
a ¼ ro sinh ho

(7)

At a given fully developed region, the outer wall and the inner
wall of the curved eccentric annulus can be expressed respectively
in a bipolar-toroidal coordinate system as
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Fig. 5. Axial velocity contour lines (upper half) and secondary flow field (lower half) at six different eccentricities and curvatures of eccentric curved annulus for Re¼ 200 and
N¼ 0.5.
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where E is the non-dimensional eccentricity and N is the radius
ratio.

E ¼ e
ro � ri

; N ¼ ri

ro
(10)

The local friction factor in the eccentric curved annulus can be
expressed based on the outer and inner pipe walls using the
following relations
fo ¼
1

hho

�
vw
vh

�
ho

8
rw2 at outer pipe

fi ¼
1

hhi

�
vw
vh

�
hi

8
rw2

at inner pipe
(11)

The mean friction factor can be determined in terms of the
above mentioned local friction factors as

f ¼ Nfi þ fo
1þ N

(12)

The boundary condition for the velocity is no-slip condition at
the walls and for the thermal boundary either the inner pipe or the
outer pipe is adiabatic while the other one is considered to be either
at the constant temperature or at the constant heat flux. Therefore,
four different thermal boundaries are taken into account in the
current study. For the constant temperature at the outer or inner
wall, the thermal boundaries are written respectively as

Tðho; x;4Þ ¼ To or qo ¼ 0; where q ¼ T0�T
T0�Tm

for outer wall

Tðhi; x;4Þ ¼ Ti or qi ¼ 0; where q ¼ Ti�T
Ti�Tm

for inner wall

(13)

For the constant heat flux thermal boundary at the outer or
inner wall, the boundary conditions are expressed respectively as

vq

vh

		
hi
¼ 1 for inner wall; where q ¼ Ti�T

q00i Dh=k

vq

vh

		
ho
¼ 1 for outer wall; where q ¼ To�T

q00oDh=k

(14)

where, T i and To are the average wall temperatures of inner and
outer wall respectively. On the other hand, the fully developed
conditions for the axial velocity and the temperature profiles have
to be applied. In the hydrodynamically fully developed region, the
axial velocity profile remains unchanged in the axial direction and
it can be represented as

vw
v4
¼ 0: (15)

However, in the thermally fully developed region, depending on
the thermal boundary conditions applied on the curved annulus
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walls, the corresponding fully developed conditions must satisfy.
The thermally fully developed conditions for the constant
temperature at the inner wall or at the outer wall of the annulus can
be expressed respectively as

vT
v4
¼ vTm

v4
¼ 2priq

00hðx; hiÞsinhhi

rcpAwm
vT
v4
¼ vTm

v4
¼ 2proq00hðx;hoÞsinhho

rcpAwm

(16)

where Tm is the bulk temperature and wm the mean axial velocity,
and A the annular cross sectional area of the curved annulus. They
are defined as

wm ¼
Zp

0

ZhI

hO

h2wdhdx=
p
2

�
r2

o � r2
i

�
(17)
Tm ¼
Z Z

h2Twdhdx=
p
2

�
r2

o � r2
i

�
wm (18)
p

0

hI

hO

The fully developed conditions for the constant heat flux at the
inner wall or at the outer wall of the curved annulus can be
expressed respectively as

vT
v4
¼ Ti � T

Ti � Tm

vTm

v4
at the inner wall

vT
v4
¼ T0 � T

T0 � Tm

vTm

v4
at the outer wall

(19)

For the four cases considered here including the inner pipe
insulated and the outer pipe either at the constant heat flux or at
the constant temperature or the outer pipe insulated and the inner
pipe either at the constant heat flux or at the constant temperature,
the local dimensionless heat transfer rate in an eccentric curved
annulus can be determined as
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Nux ¼ �
Dh

hhi

1
Ti � Tm

�
vT
vh

�
hi

for constant temperature

at inner wall

Nux ¼ �
Dh

hho

1
To � Tm

�
vT
vh

�
ho

for constant temperature at outer wall (20)

Nux ¼
Dh

k

_q00i
T i � Tm

for constant heat flux at inner wall

Nux ¼
Dh

k

_q00o
To � Tm

for constant heat flux at outer wall
(21)

In the four different cases of thermal boundaries, the average
Nusselt number can be expressed as
Nu ¼ 1
pri

Zp

0

Nuxhxdx for inner wall

Nu ¼ 1
pro

Zp

0

Nuxhxdx for outer wall

(22)

Furthermore, in any kind of curved pipe flows, there are three
common important non-dimensional physical parameters
including the Reynolds number, the Dean number, and the non-
dimensional curvature from which two of them are independent
and are used to analyze different corresponding physical
phenomena. They can be defined as

Reynolds number:

Re ¼ rwmdh

m
(23)

Non-dimensional curvature:

l ¼ a
dh
¼ sinh ho

2ð1� NÞ ¼
N sinh hi

2ð1� NÞ (24)
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Dean number:

KLC ¼
Re

l1=2
(25)

As is evident from Eq. (23), using the toroidal coordinate system
based on the bipolar coordinate, the curvature depends on the
eccentricity for a specified radius ratio (N). Therefore, the variation
of the eccentricity results in the variation of the curvature. Hence,
to investigate the effect of eccentricity and curvature on the flow
and temperature field in detail, six different cases are considered in
the Results and discussion section.
3. Numerical method

The governing equations are solved using forward in time and
central in space finite difference method based on the projection
algorithm [38]. Since the steady state solution of the problem is
considered, the unsteady terms in the equations must vanish.
Therefore, the following convergence conditions must be applied


max
				vu
vt

				; max
				vv

vt

				; max
				vw

vt

				
�
� 3 (26)

where 3 is a small value close to zero depending on the accuracy of
the solution. Here it is taken into account as 10�6. In the projection
algorithm the momentum equations are split into two fractions
using an auxiliary velocity, v*, as follows

V
!* � V

!n

Dt
þ ððV!$VÞ$ V

!Þn¼ n
�

V2V
�n

(27)

V
!nþ1 � V

!*

Dt
þ Vpnþ1

r
¼ 0 (28)

V$ V
!nþ1 ¼ 0 (29)
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V2pnþ1 ¼ r

Dt
V$ V
!* (30)

Furthermore, it can be easily proven that the pressure field in
the projection algorithm is independent of the boundary values of
v*. Therefore, by taking a suitable boundary value of v* equal to the
physical velocity values at the boundaries, the following Neumann
condition for the pressure at all boundaries can be applied.

vp
vn
¼ 0 (31)

Due to the explicit discretization, the following stability condi-
tions have to be applied

4Dt

min
n�

h4d4
2
;
�

hxdx
�2
;
�
hhdh

2
o

Re
�1;

1
2

max
�

u2þv2
�

ReDt�1

(32)
where, Re is the Reynolds number, Re¼ rwmDh/m, and Dt is the
marching time step.

The staggered grid is used to discretize the upper half domain of
the curved annulus in the h and in the x directions. For the domain
defined in the bipolar-toroidal coordinate system (Fig. 2a), the h

varies between hi and ho and the x varies between 0 and p.
Therefore, the computational domain shown in Fig. 2b is divided
into uniform space steps in the h and the x directions.

4. Grid independency test and code accuracy

The second order numerical code developed here is run on the
three different meshes of 40� 20, 60� 30, and 80� 40 to study its
accuracy and conservative property. The numerical results obtained
are shown in Table 1 where the contours of the axial velocity and
the temperature field along with the friction factors and the heat
transfer rates are compared in the forgoing three meshes. As is
evident from the table, the numerical results obtained in the three
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different mesh sizes indicate a maximum five percent deviation,
clearly indicating the well performance of the grid independency of
the code.

On the other hand, to check the accuracy of the numerical code,
the numerical results obtained for the eccentric curved annulus at
η

T
em

pe
ra

tu
re

0.911.11.21.31.4

0

0.05

0.1

0.15

0.2

0.25

0.3 ξ=0
ξ=π/5
ξ=2π/5
ξ=3π/5
ξ=4π/5
ξ=π

E = 0.6, λ=1

η

T
em

pe
ra

tu
re

T
em

pe
ra

tu
re

T
em

pe
ra

tu
re

2.82.933.13.23.3

0

0.05

0.1

0.15

0.2

0.25

ξ=0
ξ=π/5
ξ=2π/5
ξ=3π/5
ξ=4π/5
ξ=π

E = 0.1, λ=7.5

22.12.2

0

0.05

0.1

0.15

0.2

0.25

0.3

ξ=0
ξ=π/5
ξ=2π/5
ξ=3π/5
ξ=4π/5
ξ=π

E = 0

11.1

0

0.05

0.1

0.15

0.2

0.25

0.3
ξ=0
ξ=π/5
ξ=2π/5
ξ=3π/5
ξ=4π/5
ξ=π

E = 0.

Fig. 14. Temperature profiles at six different angles of 0, p/5, 2p/5, 3p/5, 4p/5, and p f
E¼ 0.05 (l¼ 15) and E¼ 0.01 (l¼ 75) are compared with the
analytical solutions of the corresponding concentric straight pipe in
Figs. 3 and 4 considering the Friction factor and the Nusselt number
respectively. As is evident from the figures, the numerical results
obtained indicate a very good accuracy of the code. The slight
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difference is due to the presence of the small eccentricity as well as
curvature effects in the numerical results. In Fig. 3 as the Reynolds
number increases, the Dean number increases and the curvature
effect become smaller in the flow field, therefore, the results of the
eccentric curved annulus get closer to ones of the straight
concentric pipe.
5. Results and discussion

Considering hydrodynamically and thermally fully developed
condition in an eccentric curved annulus, it is only required to solve
the governing equations in the semi-upper or lower part of the
curved annulus cross-section. The physical domain is shown in
Fig. 1 which is suitably fit to the bipolar-toroidal coordinate system
indicated in Fig. 2a. Also, the finite difference scheme used here can
be easily applied due to the availability of uniform orthogonal
divisions in the h and the x directions as shown in Fig. 2b. It has to
be mentioned that all the numerical results obtained here are
carried out using the mesh size 60� 30 and the radius ratio of 0.5.

Similar to the fluid flow in curved pipes, the flow inside an
eccentric curved annulus develops under the effects of centrifugal,
pressure, and inertial forces. The centrifugal forces and the radial
pressure gradient due to the curvature cause the secondary flow
formation in the curved pipes. Near the walls the values of the
velocity are smaller due to the no-slip condition and consequently
the centrifugal forces which are directly proportional to the square
of the axial velocities become smaller close to the inner and outer
curved pipe walls. On the other hand, as the radius of the curvature
increases, the centrifugal forces decrease while the pressure forces
increase. Hence, the boundary layers near the walls develop from
the outer bend toward the inner bend balancing the pressure forces
with centrifugal ones. On the contrary, in the core region away from
the pipe walls the centrifugal forces are dominant due to the larger
velocities and the flow develops from the inner bend where the
centrifugal forces larger toward the outer bend. The interaction of
the core flow with the two boundary layers generates two pairs of
vortices close to the pipe walls. The pair vortex near the inner
curved pipe is smaller than the other one near the outer curved pipe
due to the stronger boundary layer development on the outer
curved pipe wall. This physical phenomenon is clearly shown in
Fig. 5 where the semi-lower annulus indicates the secondary flow
field and the semi-upper one represents the contours of the axial
velocity at six different eccentricities and curvatures. As the
eccentricity increases the intensity of the boundary layer flow over
the inner curved pipe wall weakens while that over the outer
curved pipe wall strengthens. Therefore, the vortex pair due to the
inner curved pipe wall becomes smaller and its core shifts towards
the wide region of the annulus by increasing the eccentricity.
Furthermore, the centrifugal forces push the maximum velocity
toward the outer bend comparing with the similar straight annulus
as shown in Fig. 5 (the semi-upper annulus). By increasing the
eccentricity and decreasing the curvature radius up to l¼ 1, the
cores of the two pair vortices generated by the interaction of
the core flow from the inner to the outer curvature and the two
boundary layers flows from the outer to the inner curvature shift
more toward the outer curved region due to the strengthening of
the centrifugal forces. This is accompanied with the shifting of the
maximum axial velocity location more closely to the outer curved
pipe wall compared with the corresponding eccentric straight
annulus. However, for l< 1 the center of vortices start slightly
moving toward the inner curved region and the maximum axial
velocity between x¼ 0 and x¼p/6 shifts toward the inner curved
pipe wall instead of outer curved pipe wall. This phenomenon
stems from the larger eccentricity effect (E¼ 0.7 and E¼ 0.8) at
which the axial velocity values become smaller in the wider region
between x¼ 0 and x¼p/6 and correspondingly the centrifugal
forces become weaker than the pressure gradient forces in the
curvature direction pushing the maximum axial velocity toward
inner curved pipe wall. This physical effect is clearly represented in
Fig. 6 where the axial velocity profiles at six different eccentricities
and curvatures are shown in the six x-directions of x¼ 0, x¼p/5,
x¼ 2p/5, x¼ 3p/5, x¼ 4p/5, and x¼p. For the last two cases in
Fig. 6, i.e. E¼ 0.7 and E¼ 0.8, the peak of axial velocity profiles at
x¼ 0 moves toward the inner curved pipe wall in contrast with the
other cases. Also in each case the velocity values in the wider region
are larger than the narrower one due to the less resistance in the
wider region. The local circumferential friction factors on the inner
(a) and outer (b) pipe walls are shown in Fig. 7 at six different
eccentricities and curvatures. As the numerical results indicate
beyond l¼ 1 the maximum local friction factor moves from the
outer curved region (between x¼ 0 and x¼p/2) toward the inner
curved region (between x¼p/2 and x¼p) both on the inner and
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outer pipe walls. In Fig. 8 the average friction factor versus square
root of the Dean number are shown for six different eccentricities
and curvatures of the eccentric curved annulus. As the eccentricity
increases and the curvature radius decreases, the friction factor
increases due to the intensifying centrifugal forces. But at
a constant eccentricity and curvature radius, the friction factor is
inversely proportional to the square root of Dean number.

To study the heat transfer in an eccentric curved annulus, four
different cases depending on the different thermal boundary
conditions are taken into account. These cases include the constant
temperature and the constant heat flux at either outer or inner
curved pipe while the inner or the outer pipe is kept thermally
insulated. Here, forced convection is taken into account and the
effect of gravity is neglected. However, the numerical results shown
can be used in the presence of gravity for the pipes with diameters
less than or equal four inches where the Richardson number (Gr/
Re2) stay in the dominant range of forced convection considering gases
and liquids such as glycerin. In the study by Manglik and Fang [6], it
is shown that in the eccentric straight annuli comparing with the
concentric annuli the heat transfer rate decreases as the eccen-
tricity increases. In the present study, it will be indicated that in
contrast to the eccentric straight annuli, the heat transfer rate
augmentation is possible in the eccentric curved annuli due to the
presence of secondary flows generated by the curvature. Figs. 9–12
indicate the temperature contour lines at the three Prandtl
numbers of 0.7, 1, and 5 considering each of the four thermal
boundary conditions. As the numerical results indicate for the
Prandtl numbers larger than one the secondary flow affects
strongly on the temperature field due to the larger momentum
diffusion and remarkably augments the heat transfer rates
comparing with the cases for which the Prandtl number is less than
one. Therefore, unlike the eccentric straight annuli, Prandtl number
has significant effect on the heat transfer in the eccentric curved
annuli. Figs. 13 and 14 show the temperature profiles at six different
eccentricities and curvatures taking into account the inner pipe and
the outer pipe insulated respectively. Each case involves six profiles
at six different x-directions. It is clear from Fig. 13 where the inner
pipe is insulated that the local heat transfer rate decreases by
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moving from the wider region to the narrower region resulting
from the thickening of the thermal boundary layers. But in the case
of outer insulated pipe (Fig. 14) two different physical trends are
observed depending on whether l� 1 or l> 1. In this case as dis-
cussed previously, for l> 1 at the larger eccentricities (E¼ 0.7 and
E¼ 0.8) the centrifugal forces become weaker owing to the
reduction of the axial velocity in the wider region while the pres-
sure gradient forces in the curvature direction get stronger result-
ing from the larger curvature radius. This physical phenomenon
causes the peak of velocity field moves from the outer curved pipe
wall toward the inner one in some part of the wider region and
similarly affects on the temperature field by increasing the local
heat transfer rate in the initial stage of the wider region. The local
heat transfer rates versus x are shown for the inner and outer
insulted pipe cases in Fig. 15a and b respectively. As discussed
before in Fig. 15a, it is evident that the local heat transfer rate
decreases as moving from wider region toward the narrower one,
but, this is different in the case of outer insulated pipe (Fig. 15b)
where for l� 1 the trend of the local heat transfer rate is similar to
the previous case and for l> 1 first the local heat transfer rate
increases as moving from the wider region toward specific point of
narrower region then it starts decreasing as shown for the cases of
E¼ 0.7 and 0.8 in Fig. 15b.

In Figs. 16–19 the ratio of the average Nusselt number of the
eccentric curved annulus to the concentric straight pipe [39] versus
the square root of the Dean number is represented for the four
thermal boundary cases each at six different eccentricities and
curvatures considering five different Prandtl numbers of 0.3, 0.7, 1,
3, and 5. The comparison of the Nusselt numbers in four thermal
boundary cases indicates that the Nusselt numbers for the cases
with the insulated inner pipe are larger than the ones with the
insulated outer pipe due to thinner thermal boundary near the
outer curved pipe wall. Furthermore, in each pair cases with
the same insulated pipe, the Nusselt numbers for the constant heat
flux boundary are less than the corresponding case with the
constant temperature boundary. The physical interpretation of this
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effect stems from the fact that in the cases with the constant
temperature boundary conditions, the secondary flow effect on the
temperature field is stronger than the cases with heat flux
boundary conditions. Also the numerical results indicate that the
Nusselt number increases as the eccentricity increases while
reducing the curvature radius up to l¼ 1and E¼ 0.6, beyond that
the Nusselt number starts decreasing by increasing the eccentricity
and decreasing the radius of curvature. This physical trend results
from the reduction of centrifugal forces due to the presence of the
larger eccentricities which reduces the axial velocity amount
playing major role in the secondary flow field. On the other hand
the pressure gradient in the curvature direction becomes stronger
and dominant due to the smaller curvature radius (l< 1) and
pushes the peak of the axial velocity and the temperature field
towards the inner pipe wall affecting on the heat transfer rate.
Taking into account all the four thermal cases with Pr> 1, the
Nusselt number of the eccentric curved annulus for the Dean
numbers larger than almost 150 increases comparing with the
Nusselt number of the straight concentric pipe. But, for the cases
with Pr< 1, the heat transfer rate augmentation of the eccentric
curved annulus relative to the straight concentric pipe occurs at
relatively larger Dean numbers at which the radius of curvature
becomes smaller. This is due to lower effect of secondary flow on
the temperature field at Pr< 1 and larger effect of secondary flow
on the temperature field at Pr� 1.

6. Summary and conclusion

Flow and heat transfer in an eccentric curved annulus are studied
numerically by a second order finite difference method based on the
projection algorithm. The governing equations including the conti-
nuity, full Navier–Stokes, and energy equations are written in the
bipolar-toroidal coordinate system which enables the equations to
be discritized on an orthogonal uniform staggered mesh used here.
Different eccentricities and curvature radii with four different
thermal boundaries are considered to study the physics of the
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problem in detail by visualizing different patterns of the flow and
temperature fields. The effects of non-dimensional parameters
consisting of eccentricity, curvature ratio, Dean number, Prandtl
number on the Nusselt number (heat transfer rate) and the friction
factor are investigated. It is shown that despite the straight eccentric
annuli comparing with eccentric annuli, the heat transfer rate can be
augmented in the eccentric curved annuli at the large Dean numbers
depending on the eccentricity and the curvature ratio.
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